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Multi-agent networked systems

The classical scenario: many simple units dynamically interacting
through a network.

u

Examples:

I Social networks. Units are people exchanging opinions.

I Economic/Financial networks. Units are people, companies,
banks with business relations.

I Biological networks



Multi-agent networked systems

The classical scenario: many simple units dynamically interacting
through a network.

u

Key issues:

I Equilibrium: Analysis when time →∞.

I Large Scale: Analysis when number of units N →∞.

I Resilience Dynamical effects of local perturbations

I Phase transitions Emergence of global phenomena



Multi-agent networked systems

In many applications, the assumption that units only interact
through a network is not appropriate.

In socio-economic or financial networks, units (people, companies)
may be influenced by other agents to which they are directly
connected (friends, partners, ecc), but they are also implicitly
connected through media, global markets.

If I buy a device (or choose a specific resource) following the
suggestion of a friend, my action influences the future price of the
device (resource) and so, possibly, the future choices of other
people

Need to consider models where local and global interactions are
simultaneously present.



Outline

I Review of classical interacting particle models (voter model)

I Interaction model with a global congestion term

I Hydrodynamic limit: Nash equilibrium is asymptotically
reached

I Conclusions and future research lines



Interacting particle models

G = (V ,E ) connected graph

u

xu(t) ∈ X state of unit u at time t. In this talk X = {0, 1}.
Randomly a unit u activates at time t and changes state:

xu(t) −→ xu(t+) = fu(xv (t) | v neighbor of u)

fu deterministic or stochastic.

Markov process on the configuration space XV .



Interacting particle models

G = (V ,E ) connected graph

u

v

Examples for the interacting mechanism:

I spontaneous autonomous flipping

I gossip interaction (voter model): u chooses a neighbor v at
random and copies its state.

I fu maximizes some local utility function (Game theory)



Mean field models

Full communication (graph is complete)
Homogeneous units (fu = f independent on u)

z(t) = fraction of units in state 1 at time t −→ Markov process

q+(z) (q−(z)) probability that the number of 1’s will increase
(decrease) of one unit given that the fraction of 1’s is z .

Theorem (Hydrodynamic limit N → +∞)

Under mild regularity assumptions on q+ and q−

I For every T > 0, the process on [0,T ] z(t) almost surely
converges to a solution of the ODE

z ′ = q+(z)− q−(z)

I If the Markov process is ergodic and π is the unique invariant
probability, wk lim

N→+∞
π =

∑
λjδzj

where zj ’s are the stable equilibrium points of the ODE.



Mean field models

Example: voter model with spontaneous flipping:

qg probability of a gossip step
qf probability of a flipping step

q+(z) = qg (1− z)z + qf (1− z) , q−(z) = qgz(1− z) + qf z

z ′ = (1− 2z)qf

For qf 6= 0, 1/2 is an asymptotically stable equilibrium

Weak convergence of equilibrium measure π → δ1/2



Other large scale models

Limit for N → +∞ difficult in general

I grid-like graphs

I graphs with specific degree distributions

I small world

z(t) is not Markovian!

π equilibrium on XV is a too large object.

Thermodynamic approach: global observable µ : XV → R

Analysis of πµ distribution of µ

I µ=fraction of 1’s, πµ = π(z)

I µ= fraction of disagreement links (0, 1)



An interacting model with a congestion term

At every time t, units receive a reward which depends on their own
state and on the fraction of population sharing the same state

Ru(t) = U(xu(t), z(t)) + ωu(t)

Congestion: U(0, z) increasing in z ; U(1, z) decreasing in z .
ωu(t) Gaussian i.i.d. noises

Assumption U(0, z) = U(1, z) has exactly one solution
zNash ∈ (0, 1): if z = zNash, the mean rewards for a unit in 0 or in
1 are equal.

Flipping + Gossip interaction mechanism: with probability qf a
flipping happens; with probability qg a gossip interaction happens:
a link (u, v) is activated and u copies the state of v if
Ru(t) < Rv (t). The result of the gossip interaction depends on the
global variable z!



Mean field analysis
q+(z) = qf (1−z)+qg (1−z)zθ(z) , q−(z) = qf z+qgz(1−z)(1−θ(z))

where

θ(z) = P(R(0, z) + ω′ < R(1, z) + ω′′) = P(ω > R(0, z)− R(1, z))

ω′, ω′′ ∼ N(0, σ2); ω ∼ N(0, 2σ2).

z ′ = qf (1− 2z) + qg (1− z)z [2θ(z)− 1]

Equilibria (for qf = 0): 0, 1, zNash

(θ(z) = 1/2 ⇔ R(0, z) = R(1, z))

Equilibria (for qf small): z0, z1, z̄

wk lim
qf→0

lim
N→+∞

π = δzNash

Mean field analysis is easy but not very interesting:local/global
dichotomy is lost!



Main result

Theorem
For families of expander graphs

wk lim
qf→0

lim
N→+∞

π = δzNash

Expander graphs include:

I random Erdos-Renyi graphs

I random graphs with assigned degree distribution

I Barabasi preferential attachment graphs

The theorem shows that through the gossip interactions, a learning
process is taking place: in spite of the noisy rewards (variance is
fixed!), the population reaches the Nash equilibrium.



Sketch of proof

z(t) no longer Markovian.

However, if η(t) = fraction of disagreement links at time t.

P(z(t+) = z + 1/N | z(t) = z , η(t) = η) = qf (1− z) +
qg
2 ηθ(z)

P(z(t+) = z − 1/N | z(t) = z , η(t) = η) = qf z +
qg
2 η(1− θ(z))

This leads to a balanced equation on π(z):

qf [π(z)−z+π(z+)−z−π(z−)]+
qg
2

[ηπ(z)−(1−θ(z+))ηπ(z+)−θ(z−)ηπ(z−)]

where z+ = z + 1/N, z− = z − 1/N

ηπ(z) = Eπ(z)[η] (mean value of η conditioned to be in z).



Sketch of proof

Hydrodynamic limit: integrate over a C 1 function g : [0, 1]→ R
and take the limit:

the limit points π, ηπ are measures on [0, 1] s.t.

∫ 1

0

[
qf (1− 2z) +

qg
2

(2θ(z)− 1)
dηπ
dπ

(z)

]
g ′(z)dπ(z) = 0

This implies that π must be supported where

qf (1− 2z) +
qg
2

(2θ(z)− 1)
dηπ
dπ

(z) = 0



Sketch of proof

Analysis of the equation:

qf (1− 2z) +
qg
2

(2θ(z)− 1)
dηπ
dπ

(z) = 0

Complete case: dηπ
dπ (z) = 2z(1− z). For qf → 0, π → δzNash

For expander graphs dηπ
dπ (z) ≥ δz(1− z) and the same result is

obtained.

This completes the proof



Conclusions

We have proposed an interacting particle model where units are
engaged in a congestion game and compare experiences through
gossip interaction. Our main result shows that in expander graphs,
when the number of units is large and the flipping noise small, they
dynamically reach the Nash equilibrium.

Many open issues:

I Analyze the behavior on graphs which are not expanders

I Analyze the fraction of active links η at equilibrium. Which
configurations are provileged?

I Study different models where local and global influences are
present.


